
TU Wien

Master Thesis

High-dimensional Integration: Cubature
Formulas for Multisymmetric Functions

Author:
Stefan RIGGER

Supervisor:
Assoz. Prof. Dipl. Ing. Dr.

Clemens HEITZINGER

August 31, 2017



2



Abstract

This thesis is focused on the problem of numerical multivariate integration in high
dimensions. In particular, we introduce the idea of interpolatory cubature formulas
for multsymmetric functions. The numerical calculation of integrands with a large
number of arguments is a challenging problem that arises frequently in Uncertainty
Quantification, e.g. in Bayesian Estimation or the solution of stochastic partial differ-
ential equations. While high-dimensional integration is very difficult in general, there
are certain types of integrand families that are more tractable than others, such as in-
tegrands satisfying permutation-invariance properties related to multisymmetry. The
goal of this thesis is to provide a short overview over the most popular techniques in
the field of high-dimensional numerical integration and then explain the idea of cuba-
ture formulas for multisymmetric functions in more detail, an idea that was developed
in joint work with my supervisor C. Heitzinger and my colleague G. Pammer. This
work closely follows a paper on this topic that is currently under review.

3



4



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Problemstellung der numerischen Inte-
gration multivariater Funktionen in hohen Dimensionen. Insbesondere soll eine neue
Methode diskutiert werden, nämlich die der Kubaturformeln für multisymmetrische
Funktionen. Die numerische Berechnung von Integranden, die eine große Zahl an Ar-
gumenten aufweisen, ist eine schwierige Herausforderung, die in natürlicher Weise im
Gebiet “Uncertainty Quantification” auftritt, zum Beispiel beim (numerischen) Lösen
von stochastischen partiellen Differentialgleichungen. Hochdimensionale Integration
ist im Allgemeinen schwierig, jedoch gibt es bestimmte Klassen von Integranden für
die sich das Problem der hochdimensionalen Integration als leichter herausstellt. Wir
interessieren uns daher für Klassen von Funktionen, die bestimmte Permutationsin-
varianzeigenschaften erfüllen wie etwa multisymmetrische Funktionen. Ziel dieser Ar-
beit ist zunächst einen kurzen Überblick über die beliebtesten Techniken zu geben,
die bei hochdimensionaler Integration zum Einsatz kommen, und anschließend näher
auf Kubaturformeln für multisymmetrische Funktionen einzugehen. Die Idee, Ku-
baturformeln für solche Familien von Funktionen zu betrachten wurde gemeinsam mit
meinem Betreuer C. Heitzinger und meinem Kollegen G. Pammer entwickelt. Eine
Publikation zu diesem Thema, die inhaltlich in weiten Teilen mit der vorliegenden
Arbeit übereinstimmt, wird derzeit rezensiert.

5



6



Acknowledgements

I would like to thank my supervisor, Prof. Clemens Heitzinger, for his continuous
encouragement and for providing me with the opportunity to work on this topic.

I would also like to thank my friends and colleagues at TU Wien for all the interesting
and entertaining conversations we had together. Without them the experience of
studying mathematics would not have been as pleasant and as fascinating as for me
as it proved to be. In particular, I want to thank my colleague and friend Gudmund
Pammer for the countless hours we spent together developing our idea of cubature
formulas for multisymmetric functions, the core idea behind this work.

Finally, I would like to thank my parents for their unwavering and unconditional
support throughout these years.

7



8



Danksagung

Zuerst möchte ich mich bei meinem Betreuer, Prof. Clemens Heitzinger, für die Gele-
genheit an diesem Thema zu arbeiten sowie für seine stets ermutigenden Anmerkungen
bedanken.

Ich möchte mich außerdem bei meinen Kollegen und Freunden an der TU Wien für
all die interessanten und unterhaltsamen Gespräche der letzten Jahre bedanken, durch
die mein Studium zu einer angenehmen und faszinierenden Erfahrung geworden ist.
Insbesondere möchte ich mich bei meinem Kollegen und Freund Gudmund Pammer
für die unzähligen Stunden bedanken, die wir zusammmen damit verbracht haben, an
unserer Idee der Kubaturformeln für multisymmetrische Funktionen zu arbeiten, die
Grundidee hinter dieser Arbeit.

Schließlich möchte ich mich bei meinen Eltern für ihre bedingungslose Unterstützung
bedanken.

9



10



Contents

1 Introduction 13
1.1 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Numerical Integration Methods 15
2.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Sparse Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Spaces of G-invariant Functions 21
3.1 Continuous and p-integrable G-invariant functions . . . . . . . . . . . . 21
3.2 Taylor Expansion of G-invariant functions . . . . . . . . . . . . . . . . 22
3.3 Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Cubature Formulas for G-invariant Functions 27
4.1 Basic Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Generating a Basis of PG

ďd . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Calculating Integrals of Basis Polynomials . . . . . . . . . . . . . . . . 29

5 Multisymmetry 31
5.1 Algebraical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Implementation of the Basic Scheme . . . . . . . . . . . . . . . . . . . 36

6 Numerical Results 39
6.1 Low-dimensional Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 High-dimensional Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 A Stochastic Partial Differential Equation . . . . . . . . . . . . . . . . 47

7 Conclusions 53

11



12 CONTENTS



CHAPTER 1

Introduction

The ideas discussed in this work were motivated by problems arising in the field of
Uncertainty Quantification, more precisely the numerical solution of stochastic partial
differential equations. In general, the numerical solution of stochastic partial differen-
tial equations is very computationally demanding because of the possibly large number
of stochastic dimensions in addition to the spatial dimensions. If the coefficients of a
stochastic partial differential equation exhibit an additional structure such as symme-
tries, the symmetries can be used to reduce the computational work significantly as
shown here.

Numerical multivariate integration suffers from the so-called curse of dimensionality,
meaning that for several classes of smooth functions the amount of function evalua-
tions needed to achieve an error less than ε for all functions of a class (i.e., in the worst
case) grows exponentially in dimension N (i.e., the number of arguments) [13]. The
efficient numerical treatment of high-dimensional problems can however be achieved
by assuming a-priori knowledge on the “importance” of the function arguments, for
example through the use of quasi-Monte-Carlo rules adapted to function spaces en-
dowed with weighted norms; see [9] for a survey. This a-priori knowledge is often
available if stochastic partial differential equations are to be solved. Recently, the idea
to exploit permutation-invariance conditions as another kind of a-priori knowledge has
been enunciated [26, 27], and it has been shown that the complexity of such integra-
tion problems can be significantly reduced if the permutation-invariance conditions
are exploited in the construction of quasi-Monte-Carlo rules [17]. We propose to de-
velop interpolatory cubature formulas for permutation-invariance conditions related to
multisymmetry groups, motivated by the following example.

Let upx1, . . . , xNq be a real-valued function of N “ nm variables defined on RN that
represents a physical attribute of a multi-particle system comprising n particles. Let
the relevant parameters of the physical state of the n particles necessary to compute
the variable u be the vector px1, . . . , xNq, where each particle is parametrized by an
m-vector xi “ pxpi´1qm`1, . . . , ximq P Rm for i P t1, . . . , nu. Assume that the particles

13



14 CHAPTER 1. INTRODUCTION

are of the same type and are perfectly indistinguishable. Interchanging the role of
two such particles in a representation of a physical state then results in a represen-
tation of the identical state. Translating this property to the function u means that
upx1, . . . , xNq “ upx1, . . . ,xnq “ upxπp1q, ..,xπpnqqq holds for any transposition π P Sn.
Examples are upx1, . . . , xNq being the gravitational or electrostatic force exerted on a
particle located at x “ 0 by n point masses with identical weight that are distributed
in m-dimensional space, where the coordinate vector of the i-th particle is given by
xi. Clearly, interchanging the coordinate vectors of two such particles does not change
the value of u. This motivates the following definition.

Definition 1.1. Let m and n be natural numbers and N :“ mn. Let a, b, . . . , z be
an alphabet of n letters. We organize the arguments of a function u : r0, 1sN Ñ R in
a matrix

X :“

¨

˚

˚

˚

˝

a1 . . . z1
a2 . . . z2
... . . . ...
am . . . zm

˛

‹

‹

‹

‚

of indeterminates a1, . . . , zm P r0, 1s. The function u is called pn,mq-multisymmetric if
u is unchanged under permutations of the columns of X. We denote the corresponding
group of permutations of RN by Sn,m.

This property is sometimes called MacMahon symmetry or vector symmetry. It is easy
to see that for any N -variate real-valued function u, the set tσ P SN | u ˝ σ “ uu is a
subgroup of SN , so the following notion is natural.

Definition 1.2. Let pG, ˝q be a subgroup of pSN , ˝q. A function u : r0, 1sN Ñ R is
called G-invariant if

upσpx1, . . . , xNqq “ upx1, . . . , xNq @σ P G @px1, . . . , xNq P r0, 1sN . (1.1)

Outline of Thesis

In the second chapter, we give a brief summary of the most popular techniques used
for high-dimensional integration problems. The third chapter contains some simple
results about analytical properties of spaces of G-invariant functions as well as error
bounds for cubature formulas for multisymmetric functions. In the fourth chapter,
we develop a numerical strategy to compute cubature formulas for multisymmetric
functions. In the fifth chapter, we discuss some elementary results about bases and
generating systems of spaces of multisymmetric polynomials. Numerical results are
presented in the sixth chapter, comparing the proposed formulas to other integration
techniques such as product rules, quasi-Monte Carlo rules and sparse grids. Finally,
we draw some conclusions in the seventh chapter.



CHAPTER 2

Numerical Integration Methods

Of the many challenges posed by multivariate numerical integration, the most difficult
one seems to be overcoming the so-called curse of dimensionality, which means that the
worst-case difficulty of numerical multivariate integration increases with the number of
integration variables. Another challenge is the variety of possible geometries, because
often a strategy that works for one geometry might not work for another, e.g. a strategy
that works for hyperrectangles does not necessarily work for hyperspheres. We will
confine ourselves to the case of the unit hypercube in this work (from which the case of
general hyperrectangles can be deduced easily) and focus on the difficulties introduced
by considering large dimensions. Also, we only consider somewhat smooth functions.

Formulation of the Problem

We wish to approximate the integral

INpfq “

ż

r0,1sN
fpxq dx :“

ż 1

0
¨ ¨ ¨

ż 1

0
fpx1, . . . , xNq dx1 . . . dxN , (2.1)

for some continuous function f , where N ě 1 is possibly large, by a k-point integration
rule of the form

Qpfq “
k
ÿ

i“1
ωifpxiq, (2.2)

with weights ω1, . . . , ωk P R and f is evaluated at the (usually prescribed) nodes
x1, . . . ,xk P r0, 1sN .

15



16 CHAPTER 2. NUMERICAL INTEGRATION METHODS

Monte Carlo Methods

The Standard Monte Carlo method (SMC) or Monte Carlo method (MC) is an equal-
weight cubature rule of the form

Qkpfq “
1
k

k
ÿ

i“1
fpuiq, (2.3)

where u1, . . . ,uk are i.i.d (independent and identically distributed) uniform random
variables on r0, 1sN . The fact that the nodes are not prescribed, but sampled from a
uniform distribution on r0, 1sN distinguishes Standard Monte Carlo from other meth-
ods discussed in this work. In particular, this makes it possible to find probabilistic
error bounds. The following result is well-known, see for example [9].

Theorem 2.1 (Error bounds for Standard Monte Carlo). For all f P L2pr0, 1sN ,Rq,
we have

b

Er|INpfq ´Qkpfq|
2
s “

σpfq
?
k

(2.4)

where the expectation is taken with respect to the joint distribution of pu1, . . . ,ukq, and

σ2
pfq :“ INpf

2
q ´ pINpfqq

2 (2.5)

is the variance of f .

It is easy to see that the random variable Qkpfq has mean

ErQkpfqs “ INpfq

and variance

VrQkpfqs “
σ2pfq

k
.

By the central limit theorem, if f P L2pr0, 1sNq and f ‰ 0, then

lim
kÑ8

P
ˆ

|INpfq ´Qkpfq| ď c
σpfq
?
k

˙

“ Φpcq ´ Φp´cq.

where Φ is the distribution function of the standard normal distribution. This means
that we have a probabilistic error bound with a convergence rate of Opk´1{2q inde-
pendently of the dimension N . Even though the independence of the dimension is a
pleasing property, the convergence rate of Opk´1{2q can be very slow in practice, espe-
cially when dealing with very smooth functions. This motivates the use of quasi-Monte
Carlo methods.



2.2. MONTE CARLO METHODS 17

Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) methods are equal-weight cubature rules of the form

Qkpfq :“ 1
k

k
ÿ

i“1
fpxiq (2.6)

where the nodes x1, . . . ,xk P r0, 1sN are chosen deterministically. By doing this, one
hopes to find determinstic error bounds and to improve the MC convergence rate of
Opk´1{2q for smooth functions. See [9] for a survey on quasi-Monte Carlo methods.

Definition 2.2 (radical inverse function). For integers i ě 0 and b ě 2, we define the
radical inverse function φbpiq as follows.

If i “
8
ÿ

a“1
iab

a´1, where ia P t0, 1, . . . , b´ 1u, then φbpiq :“
8
ÿ

a“1

ia
ba
.

In other words, if i “ p¨ ¨ ¨ , i2i1qb denotes the base b representation of i, then φbpiq :“
p0.i1i2 ¨ ¨ ¨ qb.

Example 2.3 (van der Corput sequence). The van der Corput sequence in base b is
the one-dimensional sequence

φbp0q, φbp1q, φbp2q, . . .

For example, take b “ 2. We write down the natural numbers 0, 1, 2, . . . in base 2

0, 12, 102, 112, 1002, 1012, 1102, . . .

Applying φ2 to each number yields

0, 0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, . . .

which in decimal form is the sequence

0, 0.5, 0.25, 0.75, 0.125, 0.625, 0.375, . . .

Example 2.4 (Halton sequence). Let p1, . . . , pN be the first N prime numbers. The
Halton sequence x1,x2, . . . in N dimensions is given by

xi “ pφp1piq, φp2piq, . . . , φpN piqq , i “ 0, 1, . . .

that is, the jth components of nodes in the Halton sequence form the van der Corput
sequence in base pj, where pj is the jth prime. Explicitly, we have

x1 “ p0, 0, 0, . . . , 0q,
x2 “ p0.12, 0.13, 0.15, . . . , 0.1pN q
x3 “ p0.012, 0.23, 0.25, . . . , 0.2pN q,

...



18 CHAPTER 2. NUMERICAL INTEGRATION METHODS

Definition 2.5 (star discrepancy). Let P “ tx1, . . . ,xku be a point set. We define
the star discrepancy D˚NpP q as

D˚kpP q “ sup
yiPr0,1s

ˇ

ˇ

ˇ

ˇ

ˇ

s
ź

i“1
yi ´

# tP Xˆsi“1r0, yisu
N

ˇ

ˇ

ˇ

ˇ

ˇ

.

The star discrepancy of a point set P can be seen as a measure of how much P deviates
from a uniformly distributed point set.

Theorem 2.6 (Koksma-Hlawka inequality). If f has bounded variation on r0, 1sN in
the sense of Hardy and Krause, then for any point set P “ tx1, . . . ,xku the inequality

ˇ

ˇ

ˇ

ˇ

ˇ

1
k

k
ÿ

i“1
fpxiq ´

ż

r0,1sN
fpuq du

ˇ

ˇ

ˇ

ˇ

ˇ

ď V pfqD˚kpP q (2.7)

holds, where V pfq designates the variation in the sense of Hardy and Krause.

The definition of variation in the sense of Hardy and Krause is given in [15]. The
Koksma-Hlawka inequality is sharp in the sense that for any x1, . . . ,xk P r0, 1sN and
ε ą 0, one can find f P C8pr0, 1sNq with V pfq “ 1 such that

ˇ

ˇ

ˇ

ˇ

ˇ

1
k

k
ÿ

i“1
fpxiq ´

ż

r0,1sN
fpuq du

ˇ

ˇ

ˇ

ˇ

ˇ

ą D˚kptx1, . . .xkuq ´ ε

For proofs of the above statements see Chapter 2, Theorem 2.11 and Theorem 2.12
in [15]. The Koksma-Hlawka inequality implies error bounds for various kinds of
sequences. Van der Corput and Halton sequences are known to have discrepancies
satisfying Dptx1, . . . ,xkuq “ OplogpkqN{kq, (see [9]) which by the Koksma-Hlawka
inequality implies convergence rates of order logpkqN{k for functions of bounded vari-
ation, which beats the Monte Carlo convergence rate of Opk1{2q asymptotically.

Sparse Grids

Let f : r0, 1s Ñ R be a continuous function and pmkqkPN be a non-decreasing sequence
of natural numbers. Let

Qmkpfq :“
mk
ÿ

i“1
wikfpxikq (2.8)

denote a sequence of quadrature rules with positive weights wik P p0,8q which satisfies

lim
kÑ8

Qmkpfq “

ż 1

0
fpxq dx, f P Cr0, 1s. (2.9)

Define Qm0 :“ 0 and
∆k :“ Qmk ´Qmk´1 , k ě 1.



2.3. SPARSE GRIDS 19

For a multiindex pk1, . . . , kNq “ k P NN , let

∆k “ ∆k1 b ¨ ¨ ¨ b∆kN .

Now, if f : r0, 1sN Ñ R is a multivariate continuous function, we find
ż

r0,1sN
fpxq dx “

ÿ

kPNN
∆kpfq.

For a given l P N, the classical sparse grid method, sometimes called Smolyak method,
is then defined by

Q
pNq
l pfq :“

ÿ

|k|ďl`N´1
∆kpfq (2.10)

where |k| :“
řN
i“1 ki. Note that the tensor product rule is recovered if one chooses

| ¨ |8 :“ maxpk1, . . . , kNq instead of the | ¨ |-norm. It is also possible to choose the
multiindices k appearing in (2.10) adaptively depending on the function f , see [12].
For a survey on sparse grids see [5]. The number of points in a sparse grid can be
determined as

nNl “
ÿ

|k|ďl`N´1
mk1 ¨ ¨ ¨mkN . (2.11)

If n1
l “ Op2lq the order of nNl is (see [16])

nNl “ Op2llN´1
q.

Define the space of functions with bounded mixed derivatives or order r, that is,

Wr
N :“

"

f : r0, 1sN Ñ R,
›

›

›

›

B|s|f

Bs1x1 ¨ ¨ ¨ BsNxN

›

›

›

›

ă 8, si ď r

*

Now assume that the one-dimensional quadrature formulas satisfy the error bound
ˇ

ˇ

ˇ

ˇ

Qmlpfq ´

ż 1

0
fpxq dx

ˇ

ˇ

ˇ

ˇ

“ Oppn1
l q
´r
q, f P Cpr0, 1sNqr.

Which holds, for example, for interpolatory quadrature formulas with positive weights,
such as the Clenshaw-Curtis, Gauss-Patterson and Gauss-Legendre formulas. Taking
one of these rules as a one-dimensional basis, if f P Wr

N and n1
l “ Op2lq, we have an

error bound of order (see [25])

ˇ

ˇ

ˇ

ˇ

Q
pNq
l pfq ´

ż

r0,1sN
fpxq dx

ˇ

ˇ

ˇ

ˇ

“ Op2´lrlpN´1qpr`1q
q. (2.12)



20 CHAPTER 2. NUMERICAL INTEGRATION METHODS



CHAPTER 3

Spaces of G-invariant Functions

Continuous and p-integrable G-invariant functions

Here and in the following chapters, let G denote a (fixed) subgroup of SN , the sym-
metric group in N letters. We denote the N -dimensional unit cube by I :“ r0, 1sN . If
X is a vector space of real-valued functions defined on a subset of RN , we denote its
subspace of G-invariant functions by XG, where G-invariance is to be understood in
an almost-everywhere sense if X “ Lp. We denote the space of polynomial functions
defined on r0, 1sN by P , and the space of polynomial functions of degree less than or
equal to d by Pďd. Symmetrization operators like the one considered in proposition
3.1 are sometimes considered in invariant theory, e.g. in the proof of the Hilbert Basis
theorem, and are also called Reynolds operators in the literature. Analytical properties
of such operators have been derived in [26, 27, 17], although not for the precise setting
we are interested in.

Proposition 3.1. Let X :“ pCpIq, }.}8q or X :“ pLppIq, }.}pq for 1 ď p ď 8. Then
the linear averaging operator

S : X Ñ X,

fpxq ÞÑ
1
|G|

ÿ

σPG

fpσpxqq

satisfies

Sp1q “ 1, (3.2a)
SpSpfqgq “ Spfq ¨ Spgq @@f, g P X. (3.2b)

Furthermore, S is a continuous linear projection with range RpSq “ XG.

Proof. The well-definedness of S in the case X “ LppIq follows from the fact that for
any measurable subset M Ă RN and any σ P SN we have λpMq “ λpσ´1pMqq. We

21



22 CHAPTER 3. SPACES OF G-INVARIANT FUNCTIONS

now prove formula (3.2). Clearly, Sp1q “ 1. Let f, g P X. For any π P G, we have
G ˝ π “ G, and therefore

SpSpfqgq “ S

˜

g ¨
1
|G|

ÿ

σPG

f ˝ σ

¸

“
1
|G|

ÿ

πPG

˜

g ˝ π ¨
1
|G|

ÿ

σPG

f ˝ σ ˝ π

¸

“ Spfq ¨ Spgq

holds.

Setting g :“ 1 in (3.2) shows S2 “ S. For σ P SN , the application f ÞÑ f ˝ σ is an
isometry on X. By the triangle inequality, S is bounded with }S} “ 1 and therefore
a continuous linear projection. Note that Spfq P XG for f P X and Spgq “ g for any
g P XG, so we must have that RpSq “ XG.

Theorem 3.2 (G-invariant continuous functions). The set of continuous, G-invariant
functions pCpIqG, }.}8q is a Banach algebra. The G-invariant polynomials PpIqG form
a dense subalgebra of pCpIqG, }.}8q.

Proof. Consider the operator S defined in Theorem 3.1. As RpSq “ CpIqG and S is a
continuous projection, we see that CpIqG is a closed subalgebra of CpIq. For the second
part of the theorem, let f P CpIqG. Due to the classical Weierstrass Approximation
Theorem, there is a sequence of polynomials pn converging uniformly to f . As S is
continuous, we have Sppnq Ñ Spfq as n Ñ 8, and since Spfq “ f this proves the
claim.

Theorem 3.3 (Lp-spaces of G-invariant functions.). For 1 ď p ă 8, the space LppIqG
is a Banach Space. PpIqG is a dense subspace of LppIqG.

Proof. The proof is analogous to the proof of Theorem 3.2, making use of the fact that
PpIq is dense in LppIq.

Taylor Expansion of G-invariant functions

Theorem 3.4. The Taylor polynomials of a (sufficiently smooth) G-invariant function
f : r0, 1sN Ñ R centered at a G-invariant point a P I (i.e., σpaq “ a for all σ P G)
are G-invariant.

Proof. The Taylor polynomial of order k centered at a “ pa1, . . . , aNq has the form

Tkpx1, . . . , xNq “
ÿ

|α|ďk

αPNN

1
α!D

αfpaq
N
ź

i“1
pxi ´ aiq

αi ,

whereby α! :“
śN

i“1 αi!. For σ P G, note that α! “ σpαq!, ai “ aσpiq, and

N
ź

i“1
pxi ´ aiq

αi “

N
ź

i“1
pxσpiq ´ aσpiqq

ασpiq .



3.3. ERROR BOUNDS 23

Thus,

Tkpσpx1, . . . , xNqq “
ÿ

|α|ďk

αPNN

1
α!D

αfpaq
N
ź

i“1
pxσpiq ´ aiq

αi

“
ÿ

|α|ďk

αPNN

1
σpαq!D

σpαqfpaq
N
ź

i“1
pxσpiq ´ aσpiqq

ασpiq

“
ÿ

|α|ďk

αPNN

1
α!D

σpαqfpaq
N
ź

i“1
pxi ´ aiq

αi .

In order to show that Dαfpaq “ Dσpαqfpaq, we show the claim

Dαfpxq “ Dσpαqfpσpxqq @x P p´1, 1qN

inductively on the order of the multiindex α: For α “ 0, the claim is trivial by the
G-invariance of f . Assume that Dαfpxq “ Dσpαqfpσpxqq and let ei P RN such that
eipjq “ δij. This yields

Dei`αfpxq “ lim
hÑ0

Dαfpx ` heiq ´Dαfpxq
h

“ lim
hÑ0

Dσpαqfpσpx ` heiqq ´Dσpαqfpσpxqq
h

“ Dσpei`αqfpσpxqq,

which concludes the proof.

Remark 3.5. Without the assumption that the center of the Taylor polynomials be
G-invariant, Theorem 3.4 does not hold in general: Consider for example the first-order
Taylor polynomial of fpx, yq :“ xy centered at a “ p1, 0q.

Error Bounds

Definition 3.6 (cubature formula and error functional). A k-point cubature formula
Q is a linear functional on CpIq of the form

Qpfq “
k
ÿ

i“1
ωifpxiq,

where ωi P R and xi P I for all i P t1, . . . , ku. The associated error functional E is
defined by

Epfq “

ż

I

fpxqdx ´Qpfq.

We say that a cubature formula is of degree d if Eppq “ 0 for all p P Pďd. Cubature
formulas satisfying Eppq “ 0 for all p P Pďd for a d P N are also called interpola-
tory or monomial. Many different cubature rules for elementary regions such as the



24 CHAPTER 3. SPACES OF G-INVARIANT FUNCTIONS

N -cube or N -sphere have been developed in the past, see [23, 6] for compilations.
In the monograph [7, p. 376], it is stated that “[t]here appears to be no systematic
theoretical approach to monomial rules nor any systematic evaluation of their prac-
tical effectiveness. Two properties of approximate integration rules are considered
particularly desirable: the abscissas should lie in the region and the weights should
be positive.” Furthermore [7, p. 378], “[f]inally almost all work on error estimation
has been confined to the two-dimensional case.” The cubature formulas we propose
have nodes inside the unit cube and positive weights. In this section, we will prove
error bounds that apply to any kind of monomial rule for G-invariant functions with
positive weights and nodes inside the unit cube, although our error bounds are not
fully explicit.

Estimates for the optimal approximation of real-valued, smooth functions by poly-
nomials are known as Jackson Theorems. In order to prove a-priori estimates for
multivariate cubature formulas, we quote the following relatively recent Jackson-Type
Theorem.

Theorem 3.7. Let K be a connected compact subset of RN such that any two points a
and b of K can be joined by a rectifiable arc in K with length no greater than σ|a´ b|,
where σ is a positive constant. Let f be a function of class Cm on an open neighborhood
of K where 0 ď m ă 8. Then for each nonnegative integer n, there is a polynomial
pn of degree at most n on RN with the following property: for each multiindex α with
|α| ď minpm,nq, we have

}Dα
pf ´ pnq}8 ď

C

nm´|α|

ÿ

|γ|ďm

}Dγf}8, (3.3)

where C is a positive constant depending only on N , m, and K and }.}8 denotes the
supremum norm on K.

Proof. See Theorem 2 in [1].

The following error bounds are a simple consequence of the properties of the sym-
metrization operator S and the above Jackson Theorem. We remark that the same
reasoning given in line (3.5) shows that for X “ LppIq or X “ CpIq and f P XG, one
has

distpPďd, fq “ distpPG
ďd, fq (3.4)

Theorem 3.8 (Error bounds). Let f : I Ñ R be a G-invariant function of class Cm.
Let Q be a k-point cubature formula with positive weights ωi and error functional E
that integrates every G-invariant polynomial of degree at most n exactly, i.e., ωi ě 0
for all i P t1, . . . , ku and Eppq “ 0 for all p P PG

ďn. It follows that there is a constant
K ą 0 depending only on N and m such that

|Epfq| ď
KpN,mq

nm

ÿ

|γ|ďm

}Dγf}8

holds.



3.3. ERROR BOUNDS 25

Proof. Let f P CpIqG. Consider again the linear operator S introduced in Proposi-
tion 3.1. Let pn denote a polynomial approximation of f satisfying the error bound in
Theorem 3.7. Setting sn :“ Sppnq, we obtain

}sn ´ f}8 “ }Sppn ´ fq}8 ď }S} ¨ }pn ´ f}8 ď
C

nm

ÿ

|γ|ďm

}Dγf}8. (3.5)

Note that sn is G-invariant and of degree at most n, thus Epsnq “ 0. Moreover, as Q
integrates constants exactly, we have

řk
i“1 ωi “ 1. This yields

|Epfq| “ |Epf ´ snq| ď

ż

I

|fpxq ´ snpxq|dx `
k
ÿ

i“1
ωi|fpxiq ´ snpxiq|

ď 2}sn ´ f}8 ď
2C
nm

ÿ

|γ|ďm

}Dγf}8,

which concludes the proof.

Remark 3.9. Setting G :“ tidu in Theorem 3.7, one obtains an error bound for the
classical case. Thus, the error bounds formulated above can be viewed as an answer
to an open question stated in [8].



26 CHAPTER 3. SPACES OF G-INVARIANT FUNCTIONS



CHAPTER 4

Cubature Formulas for G-invariant Functions

In this chapter, an approach for computing cubature formulas with positive weights for
G-invariant functions on r0, 1sN is proposed. Let B :“ tp1, . . . , pn˚u be a basis of PG

ďd

and define n˚ :“ dim PG
ďd. Let N :“ tx1, . . . ,xku be a collection of points in r0, 1sN .

A cubature formula based on the nodes N integrates every G-invariant polynomial of
degree at most d exactly if and only if the weights ω1, . . . , ωk satisfy the system

k
ÿ

i“1
plpxiqωi “

ż

r0,1sN
plpxqdx @l P t1, . . . , n˚u. (4.1)

In the univariate case, system (4.1) has a unique solution for any choice of distinct
x1, ...,xd. In the multivariate case, system (4.1) is not always solvable and if a solution
exists, it is not unique in general. In our case, the number of nodes will typically
exceed the number of basis polynomials by far.

Basic Scheme

We suggest the following algorithm, which is a variation of the approach presented in
[8].

1. Generate a basis p1, . . . , pn˚ of PG
ďd.

2. Calculate the integrals
ş

I
plpxqdx for all l P t1, . . . , n˚u.

3. Calculate the nodes of a univariate degree d Gaussian Quadrature formula on
r0, 1s, denoted by N0. Let C :“

śN
i“1 N0. Consider the natural action of G on C.

Choose elements x1, . . . ,xk such that the disjoint union of the orbits of the xi
equals all of C.

27



28 CHAPTER 4. CUBATURE FORMULAS FOR G-INVARIANT FUNCTIONS

4. Define A P Rn˚ˆk by pAqij :“ ppipxjqq. Let pbqi :“
ş

I
pipxqdx. Solve the linear

programming problem (LPP) with a trivial objective function

minimize 0 ¨ ω
subject to Aω “ b
and ω ě 0.

This algorithm is guaranteed to terminate with a cubature formula with positive
weights, of whom at most n˚ are strictly positive. First off, notice that the LPP
solved in the fourth step is always feasible. To see this, note that the N -dimensional
tensor product of a univariate degree-d Gaussian Quadrature Rule solves system (4.1)
with N “ C. Let yj denote the nodes and wj denote the weights of the tensor product
formula for j P t1, . . . , pd`1

2 q
Nu. If y P Ox, where Ox denotes the orbit of x, there is

a σ P G such that y “ σpxq, and as the pi are G-invariant, we have ppxq “ ppyq. Let
x1, . . . ,xk be defined as in the third step and set Ji :“ tj : yj P Oxiu for i P t1, . . . , ku.
Then, the vector ω defined by

ωi :“
ÿ

jPJi

wj

solves the system Aω “ b and we have ω ě 0. Therefore the LPP defined in step 4 is
feasible. Clearly, the feasible region is bounded as ω ě 0 and the 0-th order equation
gives

řk
i“1 ωk “ 1. Therefore, if the LPP is solved using an algorithm that produces

extreme point solutions (like the Simplex method), the solution will have at most
n˚ strictly positive weights, as extreme point solutions correspond to basic feasible
solutions for bounded LPPs.

We will proceed to present constructive algorithmical solutions to steps 1–3 of the
fundamental algorithm. Step 4 can then be carried out using any LPP-solver that
produces extreme point solutions. Although our algorithms are theoretically viable
for any subgroup G of SN , they are not computationally efficient. We will present an
optimized version of the basic scheme for the multisymmetric case in Chapter 5.

Generating a Basis of PG
ďd

Let I be the set of all multiindices α satisfying |α| ď d, i.e., I “ tpα1, . . . , αNq | αi P
N Y t0u,

řN
i“1 αi ď du. Consider the natural action of G on I. Choose β1, . . . , βn˚

such that the disjoint union of the orbits of the βi is all of I. The fact that tSpxβiq |
i P t1, . . . , n˚uu is a basis of PG

ďd seems to be regarded as a basic fact and is often
mentioned without proof or reference. For the sake of completeness, we provide an
elementary proof.

Lemma 4.1. The family pSpxβiqqi“1,...,n˚ is a basis of PG
ďd, where S is the operator

introduced in Proposition 3.1.

Proof. In order to show linear independence of the Spxβiq, note that

Dβ
pxαq “ α!δαβ @β with |β| “ |α| (4.2)



4.3. CALCULATING INTEGRALS OF BASIS POLYNOMIALS 29

holds for all α P I. Let c1, . . . , cn˚ be real numbers such that

n˚
ÿ

i“1
ciSpxβiq “

1
|G|

n˚
ÿ

i“1
ci
ÿ

σPG

xσpβiq “ 0. (4.3)

Let βj be a multiindex of order d. Because OβiXOβj “ H for i ‰ j, we have βj ‰ σpβiq
for all σ P G and i ‰ j. Setting m :“ |tσ P G | σpβjq “ βju|, we obtain

Dβj

˜

n˚
ÿ

i“1
ci
ÿ

σPG

xσpβiq
¸

“ cjmβj! “ 0. (4.4)

Repeating this reasoning inductively yields c1 “ ¨ ¨ ¨ “ cn˚ “ 0 and thus linear inde-
pendence.

We proceed to prove that the vectors Spxβiq generate PG
ďd. As S : Pďd Ñ PG

ďd is
surjective, the family pSpxαqqαPI generates PG

ďd. If α P Oβ, we have Spxαq “ Spxβq.
Thus, the equality

Ťn˚

i“1Oβi “ I implies that

spantSpxαq | α P Iu “ spantSpxβiq | i P t1, . . . , n˚uu, (4.5)

which proves the claim.

Using Lemma 4.1, a basis of PG
ďd can be generated as follows.

Algorithm 1 Basis Generation
Set I :“ tpα1, . . . , αNq | αi P NY t0u,

řN
i“1 αi ď du

Set B :“ H
while I ‰ H do

Pick α P I
Update B :“ B Y tSpxαqu
Update I :“ Iztσpαq : σ P Gu

end while
return B

Calculating Integrals of Basis Polynomials

Having generated a basis of the form Spxβ1q, . . . , Spxβn˚ q as outlined in Section 4.2,
calculating the integrals is straightforward because of the equality

ż

r0,1sN
Spxβiqdx “

ż

r0,1sN
xβidx. (4.6)



30 CHAPTER 4. CUBATURE FORMULAS FOR G-INVARIANT FUNCTIONS

Generating Nodes modulo G

Calculating univariate Gaussian Quadrature Formulas is a prominent problem, and
there are many mathematical software libraries that are able to efficiently compute
formulas of this type. Significant advances have been made recently in [2]. Let N0
denote the nodes of a univariate degree-d Gaussian Quadrature Formula. A naive
way to obtain a full representative system of C :“

śN
i“1 N0 modulo G is given in

Algorithm 2.

Algorithm 2 Node Generation
Set C :“

śN
i“1 N0

Set N :“ H
while C ‰ H do

Pick x P C
Update N :“ N Y txu
Update C :“ Cztσpxq | σ P Gu

end while
return N

Steps 1 and 3 of the basic scheme require iterations over the group G. For large |G|,
the computational complexity of these steps will therefore be high and the proposed al-
gorithms will be impractical. We suggest an algorithm that scales well with dimension
for the case of multisymmetry groups in the next chapter.



CHAPTER 5

Multisymmetry

In a purely algebraic context, the notion of multisymmetric functions usually refers
to elements of an abstract, category-theoretical construction that is not canonically
related to real-valued functions. In this work, whenever we refer to multisymmetric
functions, we consider real-valued functions defined on r0, 1sN that satisfy permutation-
invariance properties related to a multisymmetry group as defined in the introduction.

Algebraical Theory

From now on, let n and m be positive integers, and N :“ nm. As mentioned earlier,
the generally applicable algorithms proposed in Section 4.2 are highly inefficient with
respect to dimensional scaling. The study of multisymmetric polynomials is an old and
developed one, going back as far as 1852 [21]. A modern and extensive introduction to
the topic can be found in [4]. (Minimal) generating sets for spaces of multisymmetric
polynomials have been exposed in [24, 20]. We begin by exhibiting a basis of PSm,n

ďd .

Remark 5.1. We are only interested in PSm,n
ďd as an R-vector space, therefore we will

not strictly distinguish between polynomials in the algebraical sense and polynomial
functions defined on Rn.

Definition 5.2. A vector partition is a finite multiset of elements of Nmzt0u.

Let α “ pαp1q, . . . , αpkqq be a vector of k elements of Nm. We denote the vector partition
that is obtained by dropping the 0-terms and the order of the terms in pαp1q, . . . , αpkqq
by rαs :“ rpαp1q, . . . , αpkqqs. Let p be a vector partition. We can find a vector of
nonzero vectors α “ pαp1q, . . . , αpkqq such that p “ rαs. We will refer to the terms αpiq
in α as the parts of p and to the integer k as the length of the vector partition and
will denote it by `p. We call αp1q ` ¨ ¨ ¨ ` αpkq the sum of p and will denote it by sppq.
If we have sppq “ γ for γ P Nmzt0u, we call p a partition of γ. Let Πm denote the set

31



32 CHAPTER 5. MULTISYMMETRY

of vector partitions with parts in Nmzt0u. For an integer vector γ, let |γ| denote the
sum of its components.

Example 5.3. The four vector partitions of p2, 1q are given by

rp1, 0q, p1, 0q, p0, 1qs,
rp2, 0q, p0, 1qs,
rp1, 1q, p1, 0qs,
rp2, 1qs.

Let a, b, . . . , z denote an alphabet of n letters as in the introduction. As was shown in
Section 4.2, we can find a basis of PSm,n

ďd by taking the symmetrizations of the standard
monomial basis. Using the notions we just introduced, we are now able to write the
basis obtained in this way in a more explicit fashion.

Definition 5.4. Let p be a vector partition with parts in Nm of length at most n.
The monomial multisymmetric function with index p is defined as

mp “
ÿ

pαpaq,...,αpzqqPIppq

aα
paq

bα
pbq

¨ ¨ ¨ zα
pzq

,

where Ippq is the set of all α “ pαpaq, . . . , αpzqq such that rαs “ p.

Example 5.5. Let m :“ 2, n :“ 3 and p :“ rp1, 0q, p1, 0q, p1, 1qs. Then we have

mrp1,0q,p1,0q,p1,1qs “ a
p1,0qbp1,0qcp1,1q ` ap1,0qbp1,1qcp1,0q ` ap1,1qbp1,0qcp1,0q

“ a1b1c1c2 ` a1b1b2c1 ` a1a2b1c1.

Theorem 5.6. The monomial multisymmetric functions mp, where p is a vector par-
tition with parts in Nm of length at most n, together with the constant function 1 form
a basis of PSm,n.

Similarly to Lemma 4.1, Theorem 5.6 appears to be seen as a basic fact and is often
mentionend without proof or reference. Again, we include a proof for the sake of
completeness.

Proof. We may write any monomial in the form xα “ aα
paq
bα

pbq
¨ ¨ ¨ zα

pzq . We associate
the vector partition rαs “ rαpaq, αpbq, . . . , αpzqs with the multiindex α P NN . Letting
Sm,n act naturally on NN , we see that the orbit of an element α P NN can be described
by Iprαsq, i.e., all the sequences β “ pβpaq, . . . , βpzqq such that rβs “ rαs. In particular,
Spxαq agrees with mrαs up to a nonzero factor; here, S is the symmetrization operator
introduced in Proposition 3.1. As p runs through the vector partitions of length at
most n with parts in Nmzt0u, Ippq runs through the orbits of NNzt0u under Sm,n.
Thus, the claim follows from Lemma 4.1.



5.1. ALGEBRAICAL THEORY 33

As a corollary of Theorem 5.6, we find that

dim PpIqSm,nďd “ 1` |tp P Πm | |sppq| ď d, `p ď nu|. (5.1)

Formula (5.1) exhibits a property that will prove to be advantageous for our endeavor:
If n ě d, the condition `p ď n is implied by |sppq| ď d. Therefore, we see that the
dimension of PSm,n

ďd is constant in n for n ě d. Recall that dim PpIqSm,nďd gives an
upper bound on the amount of weights needed to integrate all polynomials of PpIqSm,nďd

exactly using our method, therefore this quantity can be bounded independently of n.
In other words, there is no curse of dimensionality on the amount of nodes needed to
integrate all multisymmetric polynomials of a given maximal degree exactly.

For the practical calculation of the cubature formulas, we prefer working with elemen-
tary multisymmetric functions instead of monomial multisymmetric functions. They
are defined as follows. (We choose a definition similar to the one in [24].)

Definition 5.7. Let P P RrX1, . . . , Xms be of positive degree. We define the elemen-
tary multisymmetric functions associated to P over the following generating function:

n
ÿ

k“0
tkekpP q :“ p1` tP paqq ¨ p1` tP pbqq ¨ ¨ ¨ p1` tP pzqq. (5.2)

It follows easily from this definition that

e1pP q “ P paq ` P pbq ` ¨ ¨ ¨ ` P pzq (5.3)

holds.

Polynomials of the type e1px
αq are usually referred to as power sum multisymmetric

monomials and denoted by pα.

Example 5.8. Let n :“ 3,m :“ 2 and µ :“ X2
1X2. Then we have

e1pµq “ a2
1a2 ` b

2
1b2 ` c

2
1c2.

We will only need functions e1pP q with P P RrX1, . . . , Xms
`, where the ` means

that we only take polynomials of positive degree. Similarly, let M`
m denote the set of

monomials in RrX1, . . . , Xms of positive degree.

Proposition 5.9. The R-algebra PSm,n is generated by the elementary symmetric
polynomials of the form e1pµq with µ P M`

m and total degree of µ smaller or equal
to n.

Proof. See Theorem 1 of [24].

We introduce a multigrading with values in Nm on PSm,n : For x in the alphabet
a, b . . . , z, we give the variable xi the multidegree ξi, where ξi is the i-th vector of the
canonical basis of Zm. We write mdegpPq for the multidegree of a polynomial that is
homogeneous relative to this multigrading.



34 CHAPTER 5. MULTISYMMETRY

Example 5.10. Let m :“ 2 and n :“ 2. We have mdegpa1q “ mdegpb1q “ p1, 0q.
Furthermore,

mdegpa1 ` b1q “ p1, 0q,
mdegpa1b1q “ p2, 0q,
mdegpa2b2q “ p0, 2q.

Theorem 5.11. Define the set Bn,m
ďd as

Bn,m
ďd :“

#

k
ź

i“1
e1pµiq

ˇ

ˇ

ˇ
k P N, µi P M`

m, |mdegpµiq| ď n,

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1
mdegpµiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď d

+

.

For n ă d, the set Bn,m
ďd is a generating system for PSn,m

ďd as a R-vector space. For
n ě d, the set Bn,m

ďd is a basis of PSn,m
ďd as a R-vector space.

Proof. We begin by enumerating the elements of Bn,m
ďd . Observe that for any collection

of pµiqki“1 with µi P M`
m, we have

mdeg
˜

k
ź

i“1
e1pµiq

¸

“

k
ÿ

i“1
mdegpe1pµiqq “

k
ÿ

i“1
mdegpµiq. (5.4)

We establish the mapping

ϕ : tp P Πm | parts of p have norm less than n, |sppq| ď du Ñ Bn,m
ďd zt1u,

p “ rα1, . . . , αks ÞÑ
k
ź

i“1
e1px

αiq,

where we take all αi in the definition to be nonzero. It is straightforward to see that
ϕ is a bijection. The fact that Bn,m

ďd is a generating system for PSn,m
ďd as a R-vector

space is only a rewording of Proposition 5.9, which is all there was to show for the
case n ă d.

If n ě d, the condition |sppq| ď d implies that all of the parts of p have norm not
greater than n, so in that case this condition is obsolete. We obtain

ˇ

ˇBn,m
ďd

ˇ

ˇ “ 1` |tp P Πm | |sppq| ď du| ,

which shows that Bn,m
ďd is in fact a basis by formula 5.1.

Remark 5.12. In the case m “ 1, the set Bn,m
ďd is in fact also a basis of Pn,m

ďd if n ă d.
This follows from the well-known fact that the number of integer partitions of k P N
into exactly l parts is equal to the number of integer partitions of k, where the largest
part has size exactly l. However, for m ą 1, this is not true in general. The smallest
counterexample we could find occured for the parameters m “ n “ 2 and d “ 4.
Because the dimension of PS2,2

ď4 is equal to 38, it would be cumbersome to write down
the full counterexample.



5.1. ALGEBRAICAL THEORY 35

At this point, we are just one small step away from the basis that we will actually
use to compute the cubature formulas. We will slightly generalize the ideas behind
Theorem 5.11.

Definition 5.13. Let pqiq8i“0 with qi P RrXs be a collection of univariate polynomials
such that qi is of degree i for i P N. Define

Tm :“ tqj1 b qj2 b ¨ ¨ ¨ b qjm | pj1, . . . , jmq P Nm
u.

We view Tm as a subset of RrX1, . . . , Xms. Again, denote by T `
m the elements of Tm

of positive degree.

Corollary 5.14. Define the set Cn,mďd as

Cn,mďd :“
#

k
ź

i“1
e1pPiq

ˇ

ˇ

ˇ
k P N, Pi P T `

m , |mdegpPiq| ď n,

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1
mdegpPiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď d

+

.

For n ă d, the set Cn,mďd is a generating system for PSn,m
ďd as a R-vector space. For

n ě d, the set Cn,mďd is a basis of PSn,m
ďd as a R-vector space.

Proof. From the definition of Tm, it is easy to see that |Cn,mďd | “ |Bn,m
ďd |, so by The-

orem 5.11 it is sufficient to show that Cn,mďd is a generating system for P pIq
Sn,m
ďd .

Let µ1, . . . , µk˚ (P1, . . . , Pk˚) be an enumeration of all polynomials µ P M`
m (P P

T `
m q such that |mdegpµq| ď minpn, dq (|mdegpP q| ď minpn, dq). We show that
te1pP1q, . . . , e1pPk˚qu generates PSm,n

ďd as an R-algebra. Let M P PpIqSn,mďd . By Theo-
rem 5.11, there is a polynomial Q P RrX1, . . . , Xk˚s such that

M “ Qpe1pµ1q, . . . , e1pµk˚qq

As both Mm and Tm are a basis of RrX1, . . . , Xms, we may write any µi as a linear
combination of P1, . . . , Pk˚ as

µi “
k˚
ÿ

j“1
ai,jPj @i P t1, . . . , k˚u,

where ai,j P R. This implies

e1pµiq “
k˚
ÿ

j“1
ai,j ¨ e1pPjq @i P t1, . . . , k˚u.

We define Q̂ P RrX1, . . . , Xk˚s as

Q̂pX1, . . . , Xk˚q :“ Q

˜

k
ÿ̊

j“1
a1,jXj, . . . ,

k
ÿ̊

j“1
ak˚,jXj

¸

,

which implies

Q̂pe1pP1q, . . . , e1pPk˚qq “ Qpe1pµ1q, . . . , e1pµk˚qq “M,

which concludes the proof.



36 CHAPTER 5. MULTISYMMETRY

Implementation of the Basic Scheme

Basis Generation

As indicated earlier, we will work with a “basis” of the form Cn,mďd (as in Corollary 5.14)
from now on. The fact That Cn,mďd is not a basis if n ă d is of no concern, as it is
sufficient to integrate all polynomials of a generating system of PpIqSn,mďd exactly in
order to integrate all polynomials of PpIqSn,mďd exactly.

Furthermore, in the cases we are interested in, d is typically small, so the additional
computational overhead of having a larger A-matrix than necessary when n ă d is
not problematic. For the assembly of the matrix A (as defined in Subsection 4.1),
we only have to evaluate polynomials of the form e1pP q with P P T `

m , that means
we only evaluate

`

m`d
d

˘

´ 1 polynomials consisting of n terms. This is a significant
advantage compared to monomial multisymmetric polynomials, which could have a
length of d!

`

n
d

˘

terms in the worst case.

We introduced the Cn,mďd -polynomials to alleviate a flaw of the Bn,m
ďd -polynomials: None

of the polynomials of the form e1pµq with µ P M`
m evaluate to 0 on Izt0u, resulting in a

fully dense A-matrix. To force more entries of A to be 0, we make the following choice
for the qi (as defined in Definition 5.13): Let yj denote the nodes of the univariate
degree-d Gaussian quadrature formula on r0, 1s for j P t1, . . . , d`1

2 u. Define

qj :“
j
ź

i“1
px´ yiq, j P t0, . . . , d` 1

2 u.

We chose qj for j ą d`1
2 to be a multiple of qpd`1q{2. The precise form of the multiples

of qpd`1q{2 does not have a great impact on the sparsity of A. Using this particular
basis, we obtained 30% to 72% zero entries, decreasing as n and d increase.

Calculating Integrals of Basis Polynomials

The usage of a “basis” like Cn,mďd increases the difficulty of calculating the integrals of
basis polynomials (the right hand side vector b in Section 4.1). However, we can still
find closed forms for the integrals whose complexity with respect to n is essentially
constant, assuming that d is small.

Definition 5.15. Let l be a positive integer. Define the set Ppt1, . . . , luq to be the
set of all (set-)partitions of t1, . . . , lu.

Lemma 5.16. Let Pi P T `
m for all i P t1, . . . , lu. Then the equation

ż

r0,1sN

l
ź

i“1
e1pPiq dx “

ÿ

DPPpt1,...,luq
|D|ďn

npn´ 1q ¨ ¨ ¨ pn´ |D| ` 1q
ź

BPD

ż

r0,1sm

ź

iPB

Pipyq dy

holds.



5.2. IMPLEMENTATION OF THE BASIC SCHEME 37

Proof. We calculate
ż

r0,1sN

l
ź

i“1
e1pPiq dx “

ż

r0,1sN

l
ź

i“1
pPipaq ` ¨ ¨ ¨ ` Pipzqq dx

“

ż

r0,1sN

ÿ

px1,...,xlqPta,...,zul

l
ź

i“1
Pipxiq dx.

We can treat a, . . . ,z as dummy variables for integration, therefore we can parti-
tion t1, . . . , lu into parts that have the same integral without having to remember
the variable name. For example, if l “ 4, then the term P1paqP2paqP3pbqP4pcq has
the same integral as P1pcqP2pcqP3paqP4pbq. Both terms would induce the partition
tt1, 2u, t3u, t4uu. For any partition D of t1, . . . , lu into at most n parts, there are
npn ´ 1q ¨ ¨ ¨ pn ´ |D| ` 1q terms associated to this partition, and therefore they have
the same integral, which is equal to

ś

BPD
ş

r0,1sm
ś

jPB Pjpyqdy. Hence we conclude

ż

r0,1sN

l
ź

i“1
e1pPiq dx “

ÿ

DPPpt1,...,luq|D|ďn
npn´ 1q ¨ ¨ ¨ pn´ |D| ` 1q

ź

BPD

ż

r0,1sm

ź

iPB

Pipyq dy.

Using Lemma 5.16, we only have to calculate integrals of products of Pi P T `
m in m

dimensions in order to integrate the “basis” polynomials of Cn,mďd . This comes at the
cost of iterating over partitions of t1, . . . , lu, but as l ď d and d typically is small, this
is usually inexpensive.

Generating Nodes Modulo Sm,n

Let N0 denote the nodes of a univariate degree-d Gaussian Quadrature formula. Then,
taking all n-combinations of

śm
i“1 N0 with repetitions gives a full representative system

of the nodes modulo Sm,n. Therefore, the number of orbits k of
śN

i“1 N0 under the
natural action of Sm,n is equal to

k “

ˆ

n`
`

d`1
2

˘m
´ 1

n

˙

. (5.5)

Saving Memory

The limiting factor when the algorithm is applied in the way we propose is memory
consumption. For large n, the number k of columns in the matrix A P Rn˚ˆk is usually
very large (see (5.5)), and executing the Simplex Algorithm with a large constraint
matrix uses sizable amounts of memory. Observe that in the critical cases we have
k " n˚, and n˚ is an upper bound for the number of nonzero entries in a solution.
Leaving out columns of A corresponds to searching for solutions that have entries
equal to 0 at the nodes associated with the columns that were left out. Heuristically,



38 CHAPTER 5. MULTISYMMETRY

Algorithm 3 Reduction of Columns
Initialize A0 :“ H
while A0 infeasible according to the basic scheme in Subsection 4.1 do

Add a small subset of columns of A to A0
end while
Compute solution of the system

as k " n˚, we should be able to leave out a lot of columns and still obtain results.
This motivates Algorithm 3.

This procedure proved to be very efficient, enabling us to calculate lots of formulas
that would otherwise have been out of reach.



CHAPTER 6

Numerical Results

All the formulas shown here as well as the code used to calculate them can be found
in our GitHub repository [19].

We would like to preface this chapter with a quote [18, Section 11, Paragraph 2]:

“When good results are obtained in integrating a high-dimensional func-
tion, we should conclude first of all that an especially tractable integrand
was tried and not that a generally successful method has been found. A
secondary conclusion is that we might have made a very good choice in
selecting an integration method to exploit whatever features of f made it
tractable.”

In this chapter, we compare the cubature formula for multisymmetric functions ob-
tained with the method presented in Chapter 5 to other numerical integration methods
such quasi-Monte-Carlo methods, e.g., the Sobol sequence [3, 14], sparse-grid methods,
and tensor-product formulas.

In the implementation it became apparent that the numerically most costly parts of the
algorithm proposed in Chapter 4 were finding a feasible solution to the possibly large
system of linear equations (4.1), e.g., via linear programming and the computation of
the integrals of the basis polynomials as described in Lemma 5.16. In Section 5.2.2,
an efficient work-around for the former problem was proposed using that the system
is greatly over-determined. The computational cost to calculate the integrals of the
basis polynomials increases exponentially in the maximal degree d—which is, in fact,
a weakness of this algorithm. Indeed, this was the major restriction while computing
formulas of higher degree. The great advantage of this approach is that the amount
of necessary evaluations, e.g., the amount of cubature nodes, can be bounded by a
constant for fixed m and d and all n. This can be observed in Table 6.1. However,
in our implementation, the system tends to become nummerically unstable as n or d
grows large, e.g., for n ě 100 resp. d ě 11 and m “ 1, since the value range of (4.1)
becomes wider and wider.

39



40 CHAPTER 6. NUMERICAL RESULTS

degree d
n 3 5 7 9 11
1 2 3 4 5 6
2 3 6 10 15 21
3 4 9 18 30 48
4 3 9 24 46 46
5 3 11 28 38 51
6 4 12 30 38 57
7 4 12 24 43 52
8 4 12 25 42 56

degree d
n 3 5 7 9
1 4 9 16 25
2 6 30 100 225
3 8 67 248 714
4 13 84 367 1196
5 13 90 432 1659
6 13 90 457 1581
7 13 90 465 1618
8 13 90 465 1564

Table 6.1: The left table shows the required amount of cubature nodes for a fully
symmetric cubature formula (m “ 1) of degree d. The right table shows the required
amount of cubature nodes for a multisymmetric cubature formula (m “ 2) of degree d.

Low-dimensional Test Cases

In the multisymmetric case (m “ 2), we computed formulas up to a maximal degree
of d “ 9. The following multisymmetric test integrands

g1px1, y1, . . . , xn, ynq :“
n
ÿ

i

˜

exp
´ xi

10

¯

` exppyiq `
1
2

n
ÿ

j‰i

exp
´xixj

10

¯

` exppyiyjq
¸

,

g2px1, y1, . . . , xn, ynq :“ sin
˜

n
ÿ

i

xi
10 ` yi

¸

,

g3px1, y1, . . . , xn, ynq :“ exp
˜

n
ÿ

i

´
x2
i

10 ´ y
2
i

¸

,

g4px1, y1 . . . , xn, ynq :“ 1
a
řn
i
xi
10 ` yi

were examined, whose integrals can be derived easily analytically.

Figures 6.1 and 6.2 show a comparison of Gauss-Legendre tensor-product formulas
and the proposed cubature rules. It is to expect that the proposed formulas fare worse
than the tensor-product rule, since more (multisymmetric) polynomials are exactly
integrated by the latter one. For example, if n “ 2, m “ 1, and d “ 2, the polynomial
x2y2 would be exactly integrated by the product rule but not by the proposed one. As
shown in Theorem 3.4, the Taylor expansion of a G-invariant function at a G-invariant
expansion point is G-invariant, again. This fact stands out particularly for g1 and g3,
where the dominant terms in the expansion are integrated exactly by the proposed
formulas as well. The results show that the proposed formulas yield comparably good
results for the functions g1 and g3.

We attribute the fact that the error does not converge in a better fashion, as shown
in Figures 6.3 and 6.4 to a numerical instability of our approach and the choice of
polynomials which are exactly integrated. When comparing to the tensor-product



6.1. LOW-DIMENSIONAL TEST CASES 41

n

2 3 4

3
5
7
9

d

10
-15

10
-10

10
-5

10
0

re
la

ti
v
e
 e

rr
o
r

n

2 3 4

3
5
7
9

d

10
-15

10
-10

10
-5

10
0

re
la

ti
v
e
 e

rr
o
r

Figure 6.1: Relative error of g1 (left) and g2 (right) as a function of dimension n
compared to tensor-product quadrature formulas indicated by circles. The degree of
the formulas used is denoted by d.

n

2 3 4

3
5
7
9

d

10
-8

10
-6

10
-4

10
-2

10
0

re
la

ti
v
e
 e

rr
o
r

n

2 3 4

3
5
7
9

d

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

re
la

ti
v
e
 e

rr
o
r

Figure 6.2: Relative error of g3 (left) and g4 (right) as a function of dimension n
compared to tensor-product quadrature formulas indicated by circles.The degree of
the formulas used is denoted by d.

rule, one has to note that the active dimension ranges from 4 (in the case of n “ 2)
to 12 (in the case of n “ 6), which leads to a required number of evaluations of 34 up
to 312 for the tensor-product formula of degree d “ 5, which is significantly more than
the number of evaluations needed for the multisymmetric cubature formula considering
that the (worst-case) amount of necessary evaluations remains constant for n ě d as
shown in Table 6.1.

Tables 6.2, 6.3, 6.4, and 6.5 show a comparison of multisymmetric cubature formulas to
a quasi-Monte Carlo method. Considering error and number of evaluations, the mul-
tisymmetric cubature formula seems to be superior to the quasi-Monte-Carlo method
in both aspects. Tables 6.6, 6.7, 6.8, and 6.9 show a comparison of multisymmetric
cubature formulas to a Clenshaw-Curtis sparse grid. The sparse grid was constructed
adaptively [12], where the algorithm stopped after the first iteration step where N eval-
uations are exceeded. This is not a very natural way of applying an adaptive sparse



42 CHAPTER 6. NUMERICAL RESULTS

n

1 2 3 4 5 6 7

3
5
7
9

d

10
-15

10
-10

10
-5

10
0

re
la

ti
v
e
 e

rr
o
r

n

1 2 3 4 5 6 7

3
5
7
9

d

10
-15

10
-10

10
-5

10
0

re
la

ti
v
e
 e

rr
o
r

Figure 6.3: Relative error of g1 (left) and g2 (right) as a function of dimension n. The
degree of the formulas used is denoted by d.

n

1 2 3 4 5 6 7

3
5
7
9

d

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

re
la

ti
v
e
 e

rr
o
r

n

1 2 3 4 5 6 7

3
5
7
9

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e
 e

rr
o
r

Figure 6.4: Relative error of g3 (left) and g4 (right)g as a function of dimension n. The
degree of the formulas used is denoted by d.

grid method, but otherwise the runtime and amount of function evaluations would not
have been comparable to that of our formulas or a quasi-Monte Carlo method. In-
creasing the dimensionality of the problem seems to drastically decrease the accuracy
of the sparse grid, whereas the multisymmetric cubature formula does not expose this
behaviour as much. In terms of efficiency, the multisymmetric cubature rule seems to
be superior to both the quasi-Monte-Carlo and sparse-grid methods.

High-dimensional Test Cases

For the high-dimensional comparison, we use Genz functions [11]. In the Genz func-
tions, u is a location parameter and a is an effective parameter, which is normed
according to Table 6.10. The norming ensures that the difficulty of the integration
problems remains more or less constant with respect to the number of dimensions
[11, 22]. The parameters are chosen randomly under the conditions that the func-



6.2. HIGH-DIMENSIONAL TEST CASES 43

Sym. Cubature Quasi Monte Carlo
n d “ 5 d “ 9 N “ 102 N “ 103 N “ 104

1 2.9 ¨ 10´7 2.7 ¨ 10´13 4.3 ¨ 10´4 1.6 ¨ 10´4 4.8 ¨ 10´5

2 2.3 ¨ 10´7 1.8 ¨ 10´13 2.9 ¨ 10´4 4.0 ¨ 10´4 4.3 ¨ 10´5

3 2.0 ¨ 10´7 1.5 ¨ 10´13 1.2 ¨ 10´3 1.4 ¨ 10´4 3.0 ¨ 10´5

4 1.8 ¨ 10´7 8.8 ¨ 10´11 8.6 ¨ 10´4 1.4 ¨ 10´4 4.2 ¨ 10´6

5 1.7 ¨ 10´7 1.2 ¨ 10´13 1.5 ¨ 10´3 1.5 ¨ 10´4 4.7 ¨ 10´6

Table 6.2: Comparison of the relative error of a quasi-Monte-Carlo method of N
samples and the multisymmetric cubature formula of degree d. The test integrand is
g1.

Sym. Cubature Quasi Monte Carlo
n d “ 5 d “ 9 N “ 102 N “ 103 N “ 104

1 5.1 ¨ 10´7 2.4 ¨ 10´13 1.3 ¨ 10´3 3.1 ¨ 10´4 1.0 ¨ 10´4

2 6.7 ¨ 10´7 7.2 ¨ 10´12 3.9 ¨ 10´3 5.3 ¨ 10´4 1.2 ¨ 10´5

3 1.1 ¨ 10´5 9.8 ¨ 10´9 3.9 ¨ 10´3 1.6 ¨ 10´3 1.3 ¨ 10´4

4 2.8 ¨ 10´5 1.1 ¨ 10´7 2.5 ¨ 10´3 3.9 ¨ 10´3 2.4 ¨ 10´4

5 3.2 ¨ 10´5 3.1 ¨ 10´9 3.4 ¨ 10´3 9.6 ¨ 10´3 9.5 ¨ 10´4

Table 6.3: Comparison of the relative error of a quasi-Monte-Carlo method of N
samples and the multisymmetric cubature formula of degree d. The test integrand is
g2.

Sym. Cubature Quasi Monte Carlo
n d “ 5 d “ 9 N “ 102 N “ 103 N “ 104

1 1.2 ¨ 10´5 8.1 ¨ 10´9 1.4 ¨ 10´3 2.7 ¨ 10´4 7.4 ¨ 10´5

2 2.4 ¨ 10´5 1.5 ¨ 10´8 2.3 ¨ 10´3 3.1 ¨ 10´4 1.2 ¨ 10´4

3 5.7 ¨ 10´5 2.1 ¨ 10´8 1.1 ¨ 10´4 4.3 ¨ 10´4 5.0 ¨ 10´5

4 7.7 ¨ 10´5 3.3 ¨ 10´7 7.7 ¨ 10´4 1.7 ¨ 10´3 9.7 ¨ 10´4

5 1.5 ¨ 10´4 8.8 ¨ 10´8 6.8 ¨ 10´3 2.0 ¨ 10´3 1.7 ¨ 10´4

Table 6.4: Comparison of the relative error of a quasi-Monte Carlo method of N
samples and the multisymmetric cubature formula of degree d. The test integrand is
g3.

tions remain multisymmetric and that the norm of a satisfies the value prescribed in
Table 6.10. Since these parameters are chosen randomly, we use the standard Monte-
Carlo method for computing the relative root mean square error (rRMSE)

rRMSE :“

g

f

f

f

f

f

e

E
„

´

ş

r0,1snm fpxqdx´Qpfq
¯2


E
„

´

ş

r0,1snm fpxqdx
¯2
 . (6.1)

The number of samples is chosen sufficiently large such that we obtain a 99% confidence
interval for a computation error of less than 1%.



44 CHAPTER 6. NUMERICAL RESULTS

Sym. Cubature Quasi Monte Carlo
n d “ 5 d “ 9 N “ 102 N “ 103 N “ 104

1 2.6 ¨ 10´2 7.6 ¨ 10´3 2.7 ¨ 10´2 5.6 ¨ 10´3 6.8 ¨ 10´4

2 1.3 ¨ 10´3 5.6 ¨ 10´5 1.0 ¨ 10´2 1.9 ¨ 10´3 2.9 ¨ 10´4

3 3.6 ¨ 10´5 1.0 ¨ 10´5 6.8 ¨ 10´3 1.7 ¨ 10´3 2.0 ¨ 10´4

4 1.4 ¨ 10´4 7.9 ¨ 10´6 4.9 ¨ 10´3 1.2 ¨ 10´3 1.9 ¨ 10´4

5 8.0 ¨ 10´6 1.8 ¨ 10´6 4.1 ¨ 10´3 1.0 ¨ 10´3 1.3 ¨ 10´4

Table 6.5: Comparison of the relative error of a quasi-Monte Carlo method of N
samples and the multisymmetric cubature formula of degree d. The test integrand is
g4.

Sym. Cubature Sparse Grid
n d “ 5 d “ 9 N “ 102 N “ 5 ¨ 102 N “ 103

1 2.9 ¨ 10´7 2.7 ¨ 10´13 4.8 ¨ 10´16 6.9 ¨ 10´13 1.8 ¨ 10´13

2 2.3 ¨ 10´7 1.8 ¨ 10´13 4.9 ¨ 10´6 6.9 ¨ 10´8 7.5 ¨ 10´13

3 2.0 ¨ 10´7 1.5 ¨ 10´13 8.5 ¨ 10´4 1.0 ¨ 10´7 7.2 ¨ 10´8

4 1.8 ¨ 10´7 8.8 ¨ 10´11 1.3 ¨ 10´3 6.2 ¨ 10´6 2.4 ¨ 10´6

5 1.7 ¨ 10´7 1.2 ¨ 10´13 1.6 ¨ 10´3 9.4 ¨ 10´6 6.3 ¨ 10´6

Table 6.6: Comparison of the relative error of a classical sparse grid method of at
least N evaluations and the multisymmetric cubature formula of degree d. The test
integrand is g1.

Sym. Cubature Sparse Grid
n d “ 5 d “ 9 N “ 102 N “ 5 ¨ 102 N “ 103

1 5.1 ¨ 10´7 2.4 ¨ 10´13 1.9 ¨ 10´15 2.8 ¨ 10´14 9.6 ¨ 10´13

2 6.7 ¨ 10´7 7.2 ¨ 10´12 9.2 ¨ 10´6 1.3 ¨ 10´8 8.2 ¨ 10´12

3 1.1 ¨ 10´5 9.8 ¨ 10´9 1.1 ¨ 10´4 6.5 ¨ 10´7 6.3 ¨ 10´7

4 2.8 ¨ 10´5 1.1 ¨ 10´7 5.9 ¨ 10´3 2.9 ¨ 10´4 9.1 ¨ 10´6

5 3.2 ¨ 10´5 3.1 ¨ 10´9 1.4 ¨ 10´2 9.6 ¨ 10´4 7.4 ¨ 10´4

Table 6.7: Comparison of the relative error of a classical sparse grid method of at
least N evaluations and the multisymmetric cubature formula of degree d. The test
integrand is g2.

The calculation of the exact integral for f3, Genz’s corner-peak function, demands a
significant amount of computational work, and is numerically unstable for n ą 20.
Therefore, we chose to omit this function.

In this test case, we chose m :“ 1. Figures 6.5, 6.6, 6.7, 6.8, and 6.9 compare the
fully symmetric cubature rule to standard Monte Carlo and quasi Monte Carlo with
104 samples each and a sparse grid with more than 103 evaluations. We would like to
point out that the worst-case bound on the number of evaluations for the multisym-
metric cubature rules is 19 in the case d “ 5 and 45 in the case d “ 7, a comparably
small amount. The Genz functions are used as test integrands. These results should
be taken with a grain of salt, since even though the free parameters are chosen in a



6.2. HIGH-DIMENSIONAL TEST CASES 45

Sym. Cubature Sparse Grid
n d “ 5 d “ 9 N “ 102 N “ 5 ¨ 102 N “ 103

1 1.2 ¨ 10´5 8.1 ¨ 10´9 6.9 ¨ 10´13 3.6 ¨ 10´13 1.3 ¨ 10´12

2 2.4 ¨ 10´5 1.5 ¨ 10´8 4.6 ¨ 10´5 3.0 ¨ 10´7 1.6 ¨ 10´9

3 5.7 ¨ 10´5 2.1 ¨ 10´8 2.9 ¨ 10´4 4.9 ¨ 10´6 4.5 ¨ 10´6

4 7.7 ¨ 10´5 3.3 ¨ 10´7 8.4 ¨ 10´3 6.3 ¨ 10´5 5.6 ¨ 10´5

5 1.5 ¨ 10´4 8.8 ¨ 10´8 2.1 ¨ 10´2 1.9 ¨ 10´3 1.3 ¨ 10´3

Table 6.8: Comparison of the relative error of a classical sparse grid method of at
least N evaluations and the multisymmetric cubature formula of degree d. The test
integrand is g3.

Sym. Cubature Sparse Grid
n d “ 5 d “ 9 N “ 102 N “ 5 ¨ 102 N “ 103

1 2.6 ¨ 10´2 7.6 ¨ 10´3 1.8 ¨ 10´3 9.9 ¨ 10´3 1.2 ¨ 10´3

2 1.3 ¨ 10´3 5.6 ¨ 10´5 3.6 ¨ 10´3 8.4 ¨ 10´4 2.2 ¨ 10´4

3 3.6 ¨ 10´5 1.0 ¨ 10´5 1.8 ¨ 10´3 3.8 ¨ 10´4 3.8 ¨ 10´4

4 1.4 ¨ 10´4 7.9 ¨ 10´6 2.5 ¨ 10´3 7.0 ¨ 10´4 2.3 ¨ 10´4

5 8.0 ¨ 10´6 1.8 ¨ 10´6 2.0 ¨ 10´3 4.7 ¨ 10´4 3.9 ¨ 10´4

Table 6.9: Comparison of the relative error of a classical sparse grid method of at
least N evaluations and the multisymmetric cubature formula of degree d. The test
integrand is g4.

Table 6.10: Genz Functions

Integrand Family ‖a‖1

f1pxq :“ cos p2πu1 `
ř

i aixiq
110

a

pnmq3

f2pxq :“
ś

i
1

a´2
i `pxi´uiq2

600
pnmq2

f3pxq :“ p1`
ř

i aixiq
pn¨m`1q 600

pnmq2

f4pxq :“ exp p´
ř

i a
2
i pxi ´ uiq

2q
100
nm

f5pxq :“ exp p´
ř

i ai|xi ´ ui|q
150
pnmq2

f6pxq :“
#

0, x1 ą u1 or x2 ą u2,

exp p
ř

i aixiq , otherwise
100
pnmq2

way such that the difficulty to integrate remains constant, the integrands essentially
converge to a constant as n grows. It is notable that the standard and quasi-Monte-
Carlo methods show better results for smaller dimensions. For smaller dimensions, the
test integrands are less regular (e.g., the oscillatory function oscillates very quickly for



46 CHAPTER 6. NUMERICAL RESULTS

small n and the Gaussian function has a very small variance), which favours Monte-
Carlo methods. This explanation is consistent with the observation that sparse grids
and multisymmetric cubature formulas outperform Monte-Carlo methods for very reg-
ular integrands, while less regular integrand families (see Figure 6.8 and Figure 6.9)
seem to favor Monte-Carlo methods.

n

0 100 200 300 400

Sym5

vMC

qMC

Sparse Grid

Sym7

method

10
-20

10
-15

10
-10

10
-5

10
0

10
5

re
la

ti
v
e
 e

rr
o
r

Figure 6.5: Relative error of different integration methods for Genz’s n-dimensional
oscillatory function f1.

n

0 10 20 30 40 50 60

Sym5

vMC

qMC

Sparse Grid

Sym7

method

10
-15

10
-10

10
-5

10
0

10
5

re
la

ti
v
e
 e

rr
o
r

Figure 6.6: Relative error of different integration methods for Genz’s n-dimensional
product-peak function f2.



6.3. A STOCHASTIC PARTIAL DIFFERENTIAL EQUATION 47

n

0 100 200 300 400

Sym5

vMC

qMC

Sparse Grid

Sym7

method

10
-15

10
-10

10
-5

10
0

10
5

re
la

ti
v
e
 e

rr
o
r

Figure 6.7: Relative error of different integration methods for Genz’s n-dimensional
gaussian function f4.

n

0 100 200 300 400

Sym5

vMC

qMC

Sparse Grid

Sym7

method

10
-7.5

10
-5.0

10
-2.5

10
0.0

10
2.5

re
la

ti
v
e
 e

rr
o
r

Figure 6.8: Relative error of different integration methods for Genz’s n-dimensional
continuous function f5.

A Stochastic Partial Differential Equation

In this section, we compute the expectation of the solution of a stochastic elliptic
partial differential equation using our proposed formulas as well as a quasi-Monte



48 CHAPTER 6. NUMERICAL RESULTS

n

0 10 20 30

Sym5

vMC

qMC

Sparse Grid

Sym7

method

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

re
la

ti
v
e
 e

rr
o
r

Figure 6.9: Relative error of different integration methods for Genz’s n-dimensional
discontinuous function f6.

Carlo method and compare the accuracy of the results obtained this way.

Again, we let m :“ 1 and define D :“ r0, 1s2 and a probability space Ω. We consider
the problem

´∆upx, y, ωq “ fpx, y, ωq in D ˆ Ω, (6.2a)
upx, y, ωq “ gpx, yq on BD ˆ Ω, (6.2b)

where we assume that f and g are sufficiently smooth in px, yq such that the solution
is classic. Integrating with respect to dP pωq, we obtain

´

ż

Ω
∆upx, y, ωqdP pωq “

ż

Ω
fpx, y, ωqdP pωq in D,

ż

Ω
upx, y, ωqdP pωq “ gpx, yq on BD.

Since we assumed u to be sufficiently smooth, we may exchange the order of integration
with respect to dP pωq and taking derivatives with respect to the spatial variables,
yielding

´∆Erus “ Erf s in D, (6.3)
Erus “ g on BD, (6.4)

which allows us to compute the expectation of the solution of the original linear prob-
lem by solving the deterministic problem for the expectation above.

In order to numerically solve the deterministic elliptic problems for fixed ω in (6.2),
we use the open-source Julia programming language [10]. For testing purposes, we



6.3. A STOCHASTIC PARTIAL DIFFERENTIAL EQUATION 49

consider the right-hand side

fpx, y, ωq :“ 1
n

n
ÿ

i“1
expp´Uipωqpx2

` y2
qq,

where Ui „ Up0, 1q, i.e., we choose pUiqni“1 to be an i.i.d. sequence of uniformly dis-
tributed random variables. We choose g :“ 1 such that the expectation of equation
(6.2) satisfies the equation

´∆Erus “
1´ exp p´px2 ` y2qq

x2 ` y2 in D, (6.5)

Erus “ 1 on BD. (6.6)

In this numerical example, we set n :“ 15. Figure 6.10 shows the absolute error of the
exact expectation obtained by solving (6.3) compared to the approximation obtained
by using a multisymmetric cubature formula. The accuracy of the approximation
of the expectation increases with the degree d of the cubature formula, where d P
t3, 5, 7, 9, 11u. For d “ 11, the full accuracy of the floating-point numbers is reached
and one can observe the numerical error of the finite-element solver.

Figure 6.11 shows the absolute error of the exact expectation compared to the approx-
imation obtained by using the Sobol sequence, a quasi-Monte Carlo method. Since
the integrand is highly regular, the error converges much slower for the quasi-Monte
Carlo method compared to the multisymmetric cubature formula. For d “ 3, a total
amount of four evaluation is needed, resulting in an L2-error of 5 ¨ 10´5, whereby the
L2-error for the quasi-Monte Carlo method with 102 samples is 8.7¨10´4. By taking 103

samples, the L2-error is improving by two orders of magnitude to 6.9 ¨ 10´6, whereby
the multisymmetric cubature formula for d “ 11 requires only 48 solver calls to reach
an L2-error of 5 ¨ 10´15, i.e., the computational accuracy.



50 CHAPTER 6. NUMERICAL RESULTS

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

6

0.0

3.0

6.0

9.0

d = 3

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

8

0.0

1.0

2.0

3.0

d = 5

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

1
1

0.0

3.0

6.0

9.0

d = 7

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

1
3

0.0

1.0

2.0

d = 9

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

1
5

0.0

1.0

2.0

d = 11

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Exact expectation

Figure 6.10: The first plots show the absolute error of the exact expectation obtained
by solving (6.3) compared to the approximation obtained by using a multisymmetric
cubature rule of degree d. The exact expectation is shown in the last plot.



6.3. A STOCHASTIC PARTIAL DIFFERENTIAL EQUATION 51

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

4

0.0

1.0

2.0

N = 10

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

5

0.0

2.0

4.0

6.0

N = 100

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

5

0.0

1.0

2.0

3.0

N = 200

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

5

0.0

1.0

2.0

N = 500

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

e
--

6

0.0

1.0

2.0

N = 1000

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Exact expectation

Figure 6.11: The first plots show the absolute error of the exact expectation obtained
by solving (6.3) compared to the approximation obtained by using a quasi-Monte Carlo
method with N samples. The exact expectation is shown in the last plot.



52 CHAPTER 6. NUMERICAL RESULTS



CHAPTER 7

Conclusions

By making use of a-priori knowledge of the integrand, we have developed a general
setting for creating cubature formulas for the broad class of G-invariant functions in
Definition 1.2. These cubature formulas are of immediate importance for the numerical
approximation of solutions of stochastic partial differential equations. Theoretical re-
sults for spaces of G-invariant functions were shown in Chapter 3.1 as well as standard
error bounds in Section 3.3. In the following, a general scheme for computing cuba-
ture formulas of G-invariant functions was developed in Chapter 4. Based on that, a
special kind of G-invariance, the notion of multisymmetry (see Definition 1.1) and the
corresponding polynomial spaces were further examined in Chapter 5. Finally, the al-
gorithms were implemented and numerical results were shown in Chapter 6, comparing
the obtained multisymmetric cubature formulas to other, conventional multivariate in-
tegration techniques such as tensor-product Gauss-Legendre quadrature, quasi-Monte
Carlo (the Sobol sequence), and Clenshaw-Curtis sparse grid. In the last part of Chap-
ter 6, the expectation of a simple stochastic partial differential equation was computed
by using the proposed cubature formula and a quasi-Monte Carlo method.

The numerical results show that this newly developed integration method can pre-
vail even against the computational expensive tensor-product rule in terms of relative
error to a certain extent. In both examined cases, namely the fully symmetric and
the multisymmetric one for m “ 2, it was found that the proposed multisymmetric
cubature formulas require far less evaluations for comparable accuracy than common
methods such as quasi Monte Carlo and Clenshaw-Curtis sparse grid. The effectiveness
of our approach seems to increase with the regularity of the respective integrand.The
results for the stochastic partial differential equation reenforce our conviction that
the proposed formulas perform well for smooth integrands, beating the accuracy of
the quasi-Monte Carlo method by orders of magnitude, again with far less function
evaluations. This result suggests that multisymmetric cubature formulas could suc-
cessfully be applied to more complex high dimensional problems, e.g. in a stochastic
discrete projection method or for the computation of the posterior density function in
a Bayesian parameter estimation.

53



54 CHAPTER 7. CONCLUSIONS

In particular, we want to point out that the required amount of evaluations scales
very well with the number of dimensions for multisymmetric cubature formulas, being
constant for fixed m, d, and n ě d. This can be interpreted as actually overcoming
the curse of dimensionality in the case of multisymmetry. Following the scheme of
Chapter 4, it may be possible to develop efficient algorithms for a multitude of groupsG
to compute dimensionally well-scaling cubature formulas. A logical next step might be
to consider cartesian products of multisymmetry groups, representing the case where
there are several types of particles that are not mutually interchangeable.

Nonetheless, we encountered a couple of limitations in the multisymmetric case. From
a numerical perspective, the system to be solved becomes numerically unstable and
thus the formulas obtained may lose precision as the dimension n increases.

Finally, we want to mention that natural applications of this low-cost integration
method arise, e.g., in computational physics and in particular in computational quan-
tum physics as well as in uncertainty quantification, when function evaluations are
computationally expensive such as when solving stochastic partial differential equa-
tions. Whenever one has multisymmetric, smooth integrands and efficiency is a prior-
ity, the formulas presented here seem to be the integration technique of choice.



List of Figures

6.1 Relative error of g1 (left) and g2 (right) as a function of dimension n
compared to tensor-product quadrature formulas indicated by circles.
The degree of the formulas used is denoted by d. . . . . . . . . . . . . . 41

6.2 Relative error of g3 (left) and g4 (right) as a function of dimension n com-
pared to tensor-product quadrature formulas indicated by circles.The
degree of the formulas used is denoted by d. . . . . . . . . . . . . . . . 41

6.3 Relative error of g1 (left) and g2 (right) as a function of dimension n.
The degree of the formulas used is denoted by d. . . . . . . . . . . . . . 42

6.4 Relative error of g3 (left) and g4 (right)g as a function of dimension n.
The degree of the formulas used is denoted by d. . . . . . . . . . . . . . 42

6.5 Relative error of different integration methods for Genz’s n-dimensional
oscillatory function f1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.6 Relative error of different integration methods for Genz’s n-dimensional
product-peak function f2. . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.7 Relative error of different integration methods for Genz’s n-dimensional
gaussian function f4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.8 Relative error of different integration methods for Genz’s n-dimensional
continuous function f5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.9 Relative error of different integration methods for Genz’s n-dimensional
discontinuous function f6. . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.10 The first plots show the absolute error of the exact expectation obtained
by solving (6.3) compared to the approximation obtained by using a
multisymmetric cubature rule of degree d. The exact expectation is
shown in the last plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.11 The first plots show the absolute error of the exact expectation obtained
by solving (6.3) compared to the approximation obtained by using a
quasi-Monte Carlo method with N samples. The exact expectation is
shown in the last plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

55



56 LIST OF FIGURES



Bibliography

[1] T. Bagby, L. Bos, and N. Levenberg. Multivariate simultaneous approximation.
Constr. Approx., 18(4):569–577, 2002.

[2] I. Bogaert. Iteration-free computation of Gauss-Legendre quadrature nodes and
weights. SIAM J. Sci. Comput., 36(3):a1008–a1026, 2014.

[3] Paul Bratley and Bennett L Fox. Algorithm 659: Implementing sobol’s quasiran-
dom sequence generator. ACM Transactions on Mathematical Software (TOMS),
14(1):88–100, 1988.

[4] Emmanuel Briand. Polynômes multisymétriques. Theses, October 2002. Thèse
en cotutelle avec l’Universidad de Cantabria. Co-directeur : Laureano Gonzalez-
Vega. Rapporteurs : Michel Brion, Bernard Mourrain, Jean-Yves Thibon. Autres
membres du jury : Consuelo Martinez Lopez, Tomas Recio Muniz, Felix Ulmer.

[5] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta numerica,
13:147–269, 2004.

[6] Ronald Cools and Philip Rabinowitz. Monomial cubature rules since “Stroud”:
A compilation. J. Comput. Appl. Math., 48(3):309–326, 1993.

[7] Philip J. Davis and Philip Rabinowitz. Methods of numerical integration. Cor-
rected reprint of the 1984 2nd ed. Mineola, NY: Dover Publications, corrected
reprint of the 1984 2nd ed. edition, 2007.

[8] Eric A. Devuyst and Paul V. Preckel. Gaussian cubature: a practitioner’s guide.
Math. Comput. Modelling, 45(7-8):787–794, 2007.

[9] Josef Dick, Frances Y. Kuo, and Ian H. Sloan. High-dimensional integration: The
quasi-Monte Carlo way. Acta Numerica, 22:133–288, 2013.

[10] Caroline Geiersbach, Clemens Heitzinger, Gudmund Pammer, Stefan Rigger, and
Gerhard Tulzer. A 2d finite element method solver for drift-diffusion-poisson
systems and semilinear poisson equations written in Julia. https://github.
com/Stivanification/DriftDiffusionPoissonSystems.jl, 2016.

[11] Alan Genz. A package for testing multiple integration subroutines. In Numerical
Integration, pages 337–340. Springer, 1987.

57



58 BIBLIOGRAPHY

[12] Thomas Gerstner and Michael Griebel. Dimension–adaptive tensor–product
quadrature. Computing, 71(1):65–87, 2003.

[13] A. Hinrichs, E. Novak, M. Ullrich, and H. Woźniakowski. The curse of dimension-
ality for numerical integration of smooth functions. Math. Comput., 83(290):2853–
2863, 2014.

[14] Stephen Joe and Frances Y Kuo. Remark on algorithm 659: Implementing sobol’s
quasirandom sequence generator. ACM Transactions on Mathematical Software
(TOMS), 29(1):49–57, 2003.

[15] Harald Niederreiter. Random number generation and quasi-Monte Carlo methods.
SIAM, 1992.

[16] E Novak and K Ritter. Simple cubature formulas for d-dimensional integrals
with high polynomial exactness and small error. Report, Institut für Mathematik,
Universität Erlangen–Nürnberg, 1997.

[17] Dirk Nuyens, Gowri Suryanarayana, and Markus Weimar. Rank-1 lattice rules
for multivariate integration in spaces of permutation-invariant functions. Error
bounds and tractability. Adv. Comput. Math., 42(1):55–84, 2016.

[18] Art B. Owen. Latin supercube sampling for very high-dimensional simulations.
ACM Trans. Model. Comput. Simul., 8(1):71–102, January 1998.

[19] Gudmund Pammer and Stefan Rigger. Multisymmetry. https://github.com/
Stivanification/Multisymmetry, 2017.

[20] David Rydh. A minimal set of generators for the ring of multisymmetric functions.
Annales de l’institut Fourier, 57(6):1741–1769, 2007.

[21] L Schläfli. Uber die resultante eines systems mehrerer algebraischen gleichungen,
denk. der keiser. akad. der wiss., math-naturwiss. klasse, 4 band, 1852; gesam-
melte abhandlungen, 1953.

[22] Rudolf Michael Schürer. High-dimensional numerical integration on parallel com-
puters. Citeseer, 2001.

[23] A.H. Stroud. Approximate calculation of multiple integrals. Prentice-Hall Series
in Automatic Computation. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
XIII, 431 p. $25.65 (1971)., 1971.

[24] Francesco Vaccarino. The ring of multisymmetric functions. Annales de l’institut
Fourier, 55(3):717–731, 2005.

[25] Grzegorz W Wasilkowski and Henryk Wozniakowski. Explicit cost bounds of algo-
rithms for multivariate tensor product problems. Journal of Complexity, 11(1):1–
56, 1995.

[26] Markus Weimar. The complexity of linear tensor product problems in
(anti)symmetric Hilbert spaces. J. Approx. Theory, 164(10):1345–1368, 2012.



BIBLIOGRAPHY 59

[27] Markus Weimar. On lower bounds for integration of multivariate permutation-
invariant functions. J. Complexity, 30(1):87–97, 2014.


